Forced degradation studies (FDSs) are often used in biotherapeutic development to assess criticality of quality attributes and in comparability studies to ensure product manufacturing process consistency. To gain an understanding of current industry approaches for FDS, the BioPhorum Development Group–Forced Degradation Point Share group conducted an intercompany collaboration exercise, which included a benchmarking survey and group discussions around FDS of monoclonal antibodies. The results of this industry collaboration provide insights into the practicalities of these characterization studies and how they are being used to support the product lifecycle from innovation to marketed products. The survey requested feedback on the intended purpose, materials, conditions, number and length of time points used, and analytical techniques carried out to give a complete picture of the range of common industry practices. This article discusses the results of this global benchmarking survey across 12 companies and presents these as a guide to a common approach to FDS across the industry which can be used to guide the design of FDS based on chemistry and manufacturing control product life-cycle and biomolecule needs.
Development
Viewing related articles
Formulation: An intercompany perspective on biopharmaceutical drug product robustness studies
Feb 2018 | Development Group, Fill Finish, POI - Development Group
To gain a better understanding of current industry approaches for establishing biopharmaceutical drug product (DP) robustness, the BPDG-Formulation Workstream conducted an intercompany collaboration exercise, which included a benchmarking survey and extensive group discussions around the scope, design, and execution of robustness studies. The results of this industry collaboration revealed several key common themes: (1) overall DP robustness is defined by both the formulation and the manufacturing process robustness; (2) robustness integrates the principles of quality by design (QbD); (3) DP robustness is an important factor in setting critical quality attribute control strategies and commercial specifications; (4) most companies employ robustness studies, along with prior knowledge, risk assessments, and statistics, to develop the DP design space; (5) studies are tailored to commercial development needs and the practices of each company. Three case studies further illustrate how a robustness study design for a biopharmaceutical DP balances experimental complexity, statistical power, scientific understanding, and risk assessment to provide the desired product and process knowledge. The team discusses identified industry challenges with regard to biopharmaceutical DP robustness and presents some recommendations for best practices.