Closed systems: New challenges to the cleanroom paradigm for multi-product facilities
Additional challenges to the new cleanroom paradigm from concurrent multi-product manufacturing of bulk drug substances in a controlled non-classified (CNC) ballroom environment.
This paper is a companion to 'Challenging the cleanroom paradigm for biopharmaceutical manufacturing of bulk drug substance' and published in BioPharma International in August 2011
The existing model of locating biopharmaceutical manufacturing in classified cleanrooms is being re-examined as the biopharmaceutical industry aims to improve patients’ access to products by reducing costs, while maintaining assurance of product quality and patient safety. The evolution of verifiably closed-manufacturing technologies is replacing open systems, thus removing the need for the extensive use of costly, classified environments as a risk-mitigation measure. By putting technical and procedural advances together with scientific and quality risk-based approaches, many industry leaders are improving process equipment systems such that reduced area classifications (grade D/ISO 8 at rest) and controlled non-classified (CNC) environments are now deemed appropriate for functionally closed systems and closed bulk drug-substance bioprocesses. The approach is one step towards helping reduce capital and operating costs, and thus product cost, which is a factor in improving patient access.
Another facility design and operational approach that may be attractive to industry is that of drug substance (DS) bioprocess manufacture in a “ballroom” facility. A ballroom-style facility utilizing closed systems might, in some situations, be the most economically attractive facility design, allowing for faster construction and more efficient use of financial resources and operating labor, contributing to overall lower product cost. <
This article follows on from a previous publication in which the authors discussed the trend towards manufacturing bulk-drug substances in areas of lower classification for a dedicated single-product facility. The authors suggested potential risk-mitigation approaches to protect product quality and minimize operator safety risks, and also provided estimates of the capital and operating cost benefits. This article considers the potential additional risks that concurrent multi-product manufacturing in a common/shared ballroom facility introduces. The premise is that the concepts discussed in the prior publication and extensive use of closed processing in a CNC environmental are successfully applied. It also seeks to meet industry regulations for formal risk-management approaches (QRM) (2) to the design of facilities, especially because the updated EU Annex 2 mentions risk early on and extensively (2).
The focus of this paper envisages typical combinations of biological product classes within the same CNC ballroom facility. The industry may be ready for multiproduct processing in a facility design that is radically different from those found in use today. Certain product classes, product properties, or host systems may still require dedicated facilities or specialized containment equipment to minimize the risk of operator exposure or cross-contamination.